Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. 2009. R. Frei, et al. Nature 461: 250-253.
Analysis of a rock type found only in the world's oldest oceans has shed new light on how large animals first got a foothold on the Earth. A scientific team have for the first time managed to plot the rise and fall of oxygen levels in the Earth's atmosphere over the last 3.8 billion years.
By analysing the isotopes of chromium in iron-rich sediments formed in the ancient oceans, the team has found that a rise in atmospheric oxygen levels 580 million years ago was closely followed by the evolution of animal life.
"Our research confirms for the first time that a rise in atmospheric oxygen was the driving force for oxygenation of the oceans 580 million years ago, and that this was the catalyst for the evolution of large complex animals."
"But instead of this rise being steady and gradual over time, what we saw in our data was a very unstable situation with short-lived episodes of free oxygen in the atmosphere early in Earth's history, followed by plummeting levels around 2 billion years ago.
"It was not until a second rise in atmospheric oxygen 580 million years ago that larger complex animals were able to get a foothold on the Earth." link