Thursday, February 19, 2009

Air-Filled Bones Let Pterosaurs Take First Flight

Respiratory Evolution Facilitated the Origin of Pterosaur Flight and Aerial Gigantism. 2009. Claessens, L., et al. PLoS ONE 4(2): e4497.



Study takes new look at skeletal system of pterosaurs and their modern relatives
A new study scientists explain how balloon-like air sacs, which extended from the lungs to inside the skeleton of pterosaurs, provided an efficient breathing system for the ancient beasts. The system reduced the density of the body in pterosaurs, which in turn allowed for the evolution of the largest flying vertebrates.

"We offer a reconstruction of the breathing system in pterosaurs, one that proposes the existence of a mechanism with the same essential structure to that of modern birds — except 70 million years earlier," said study co-author Leon Claessens.

Because fossils rarely preserve soft tissues, the research team conducted a comparative study that included pterosaurs, birds and crocodilians in order to get a better understanding of the relationships among air sacs, lung structure and the skeleton. By using X-ray movies and CT scans, the group characterized how the skeleton works to move air through the lungs in living animals, and also how to identify the signature traces left on bones that have been invaded by air sacs.


The evolution of pneumaticity in pteroaurs
Not only do the extinct pterosaurs show evidence that their bones that were invaded by air sacs, but patterns of pneumaticity throughout the entire skeleton of different pterosaur species parallel trends identified in many living bird groups. For example, there is a direct relationship between the proportion of the skeleton invaded by air sacs and the absolute body size of an animal.