Adaptive Evolution and Functional Redesign of Core Metabolic Proteins in Snakes. 2008. T.A. Castoe et al., PLoS ONE 3(5): e2201.
From the press release:
Researchers now have evidence that major macroevolutionary changes in snakes (e.g., physiological and metabolic adaptations and venom evolution) have been accompanied by massive functional redesign of core metabolic proteins.
“The molecular evolutionary results are remarkable, and set a new precedence for extreme protein evolutionary adaptive redesign. This represents the most dramatic burst of protein evolution in an otherwise highly conserved protein that I know of,” said Dr. David Pollock.
Over the last ten years, scientists have shown that snakes have remarkable abilities to regulate heart and digestive system development. They endure among the most extreme shifts in aerobic metabolism known in vertebrates. This has made snakes an excellent model for studying organ development, as well as physiological and metabolic regulation. The reasons that snakes are so unique had not previously been identified at the molecular level. In this recent study by Pollock and colleagues, the researchers show that mitochondrially-encoded oxidative phosphorylation proteins in snakes have endured a remarkable process of evolutionary redesign that may explain why snakes have such unique metabolism and physiology.