Tuesday, February 24, 2015
Published This Day (1871): Darwin's, The Descent of Man
On this day in 1871, Charles Darwin's book "Descent of Man, and Selection in Relation to Sex" was published in London.
Monday, February 23, 2015
Animals Tend to Evolve Toward Larger Size Over Time
Cope’s rule in the evolution of marine animals. 2015. Heim, N.A., et al. Science.
"That's also something we didn't know before," Payne said. "For reasons that we don't completely understand, the classes with large body size appear to be the ones that over time have become differentially more diverse."
Cope's rule was formulated in the late 19th century after paleontologists noticed that the body sizes of terrestrial mammals such as horses generally increased over time.
To test whether Cope's rule applies to marine animals as a whole, Payne and a team that included undergraduates and high school interns compiled a dataset including more than 17,000 groups, or genera, of marine animals spanning five major phyla-Arthropods, Brachiopods, Chordates, Echinoderms, and Mollusks-and the past 542 million years.
"Our study is the most comprehensive test of Cope's rule ever conducted," Heim said. "Nearly 75 percent of all of marine genera in the fossil record and nearly 60 percent of all the animal genera that ever lived are included in our dataset." PR
The study reveals that over the past 542 million years, the mean sized of marine animals has increased 150-fold.The research also found that the increase in body size that has occurred since animals first appeared in the fossil record around 550 million years ago is not due to all animal lineages steadily growing bigger, but rather to the diversification of groups of organisms that were already larger than other groups early in the history of animal evolution.
"That's also something we didn't know before," Payne said. "For reasons that we don't completely understand, the classes with large body size appear to be the ones that over time have become differentially more diverse."
Cope's rule was formulated in the late 19th century after paleontologists noticed that the body sizes of terrestrial mammals such as horses generally increased over time.
To test whether Cope's rule applies to marine animals as a whole, Payne and a team that included undergraduates and high school interns compiled a dataset including more than 17,000 groups, or genera, of marine animals spanning five major phyla-Arthropods, Brachiopods, Chordates, Echinoderms, and Mollusks-and the past 542 million years.
"Our study is the most comprehensive test of Cope's rule ever conducted," Heim said. "Nearly 75 percent of all of marine genera in the fossil record and nearly 60 percent of all the animal genera that ever lived are included in our dataset." PR
Wednesday, February 04, 2015
Born This Day: Raymond Dart
Dart (Feb. 4 1893 - Nov. 22, 1988) was an Australian-born, South African physical anthropologist. In 1924, working with students in the Taung limestone South Africa, they discovered the first Australopithecus africanus. Dubbed "missing link" at the time, skull is also known as the 'Taung child', and was only three years old at the time of death. More on Dart here
Tuesday, February 03, 2015
Born This Day: Gideon Mantell
Mantell (Feb. 3, 1790 – Nov. 10, 1852), a physician of Lewes in Sussex in southern England, had for years been collecting fossils in the sandstone of Tilgate forest, and he had discovered bones belonging to three extinct species: a giant crocodile, a plesiosaur, and Buckland's Megalosaurus. But in 1822 he found several teeth that "possessed characters so remarkable" that they had to have come from a fourth and distinct species of Saurian. After consulting numerous experts, Mantell finally recognized that the teeth bore an uncanny resemblance to the teeth of the living iguana, except that they were twenty times larger.
In this paper, the second published description of a dinosaur, he concluded that he had found the teeth of a giant lizard, which he named Iguanodon, or "Iguana-tooth."
Mantell illustrated his announcement with a single lithographed plate. Mantell included at the bottom of the plate a drawing of a recent iguana jaw, which is shown four times natural size, and for further comparison, he added views of the inner and outer surface of a single iguana tooth, "greatly magnified."
The traditional story that Mantell's wife found the first teeth in 1822, while the doctor was visiting a patient, appears, alas, to be unfounded.
Info and plate from HERE.
In this paper, the second published description of a dinosaur, he concluded that he had found the teeth of a giant lizard, which he named Iguanodon, or "Iguana-tooth."
Mantell illustrated his announcement with a single lithographed plate. Mantell included at the bottom of the plate a drawing of a recent iguana jaw, which is shown four times natural size, and for further comparison, he added views of the inner and outer surface of a single iguana tooth, "greatly magnified."
The traditional story that Mantell's wife found the first teeth in 1822, while the doctor was visiting a patient, appears, alas, to be unfounded.
Info and plate from HERE.
Died This Day: Ernst Mayr
Any student of biology, or anyone with an interest in the natural world, will be familiar with Ernst Mayr who passed away on February 3rd, 2005 in Bedford, Mass. Born in Kempton, Germany he joined the American Museum of Natural History as a curator in 1931. In 1953 he left the museum to work at Harvard University where he stayed until his retirement in 1975.
While working on the problem of speciation in the birds of New Guinea, Mayr realized that the multitude of species and and subspecies that he saw could best be explained as being a snapshot of evolution in action. He suggested that new species could arise when the range of one species was fractured long enough for members in different parts of the range to evolve characters that would not allow individuals to reproduce when they were brought back together again. This lead to him developing the “biological species concept” in which species are defined as populations of interbreeding organisms rather than just a collection of characters. This idea, along with his theory of “allopatric speciation” was published in his book “Systematics and the Origin of the Species” (1942) and later contributed to the “Punctuated Equilibrium” theory of Niles Eldredge and Stephen Jay Gould.
Ernst Mayr was himself inspired by the work of geneticist Theodosius Dobzhansky on the fruit fly Drosophila melanogaster and his book “Genetics and the Origin of the Species” (1937). These two men, together with the paleontologist George Gaylord Simpson, combined the sciences of genetics, zoology and paleontology into what is now known as “the new synthesis” that provides the modern experimental underpinning to the concepts that Charles Darwin presented in his book, “On the Origin of the Species” .
For anyone interested in learning more about modern evolutionary theory I’d recommend Mayr’s recent book “What Evolution Is” (2002). It’s written in an engaging and readable format from the perspective of someone who’s thought about evolution all his life.
While working on the problem of speciation in the birds of New Guinea, Mayr realized that the multitude of species and and subspecies that he saw could best be explained as being a snapshot of evolution in action. He suggested that new species could arise when the range of one species was fractured long enough for members in different parts of the range to evolve characters that would not allow individuals to reproduce when they were brought back together again. This lead to him developing the “biological species concept” in which species are defined as populations of interbreeding organisms rather than just a collection of characters. This idea, along with his theory of “allopatric speciation” was published in his book “Systematics and the Origin of the Species” (1942) and later contributed to the “Punctuated Equilibrium” theory of Niles Eldredge and Stephen Jay Gould.
Ernst Mayr was himself inspired by the work of geneticist Theodosius Dobzhansky on the fruit fly Drosophila melanogaster and his book “Genetics and the Origin of the Species” (1937). These two men, together with the paleontologist George Gaylord Simpson, combined the sciences of genetics, zoology and paleontology into what is now known as “the new synthesis” that provides the modern experimental underpinning to the concepts that Charles Darwin presented in his book, “On the Origin of the Species” .
For anyone interested in learning more about modern evolutionary theory I’d recommend Mayr’s recent book “What Evolution Is” (2002). It’s written in an engaging and readable format from the perspective of someone who’s thought about evolution all his life.
Subscribe to:
Posts (Atom)